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The multi-dimensional stability of
weak-heat-release detonations
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The stability of an overdriven planar detonation wave is examined for a one-step
Arrhenius reaction model with an order-one post-shock temperature-scaled activation
energy θ in the limit of a small post-shock temperature-scaled heat release β. The ratio
of specific heats, γ, is taken such that (γ− 1) = O(1). Under these assumptions, which
cover a wide range of realistic physical situations, the steady detonation structure can
be evaluated explicitly, with the reactant mass fraction described by an exponentially
decaying function. The analytical representation of the steady structure allows a
normal-mode description of the stability behaviour to be obtained via a two-term
asymptotic expansion in β. The resulting dispersion relation predicts that for a finite
overdrive f, the detonation is always stable to two-dimensional disturbances. For large
overdrives, the identification of regimes of stability or instability is found to depend
on a choice of distinguished limit between the heat release β and the detonation
propagation Mach number D∗. Regimes of instability are found to be characterized by
the presence of a single unstable oscillatory mode over a finite range of wavenumbers.

1. Introduction
The hydrodynamic response of a steady planar detonation to two-dimensional

linear disturbances in an ideal gas undergoing an irreversible unimolecular reaction
with an Arrhenius reaction rate most recently has been investigated numerically by
Short & Stewart (1998) using a normal-mode approach. The observed behaviour
of the disturbance is found to depend on the structure of the underlying steady
detonation wave which is characterized by the size of three parameters: the ratio of
specific heats γ and the post-shock temperature-scaled activation energy θ and heat
release β. In this formulation, both θ and β depend on the detonation Mach number
D∗. Similarly, experimental studies on cellular detonation instabilities show a marked
dependence on the chemical sensitivity of the reaction mixture and on the degree of
exothermicity of the reaction (Strehlow 1969, 1970; Lee 1984; Kaneshige, Shepherd
& Teodorczyk 1997), both of which can be captured by varying the relative sizes
of θ and β. Numerical solutions of the nonlinear reactive Euler equations with a
one-step Arrhenius reaction model also show that the characteristic cell wavelength
and thickness can vary markedly with changes in θ and β (Bourlioux & Majda 1992;
Quirk 1994; Williams, Bauwens & Oran 1996; Quirk & Short 1998). One of the major
goals of detonation wave research is to understand the hydrodynamic mechanisms
underlying the formation of the cellular patterns. Before this can be achieved in
general circumstances, a proper understanding of mechanisms controlling the wide
range of linear stability responses for varying characteristic detonation parameters
must be obtained. Consequently, several asymptotic approaches based on the limiting
behaviour of the parameters θ, β and γ previously have been formulated.
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Analytical descriptions of the lowest-frequency, two-dimensionally unstable linear
modes in the limit of large activation energy θ for both Chapman–Jouguet and over-
driven detonations have been provided by Buckmaster & Ludford (1986), Buckmaster
(1989), Yao & Stewart (1996), Short (1996), Short & Stewart (1997) and Short (1997b).
Following Blythe & Crighton (1989), the last three employ the additional assumption
of a ratio of specific heats close to unity. Short (1997b) has derived a third-order in
time and sixth-order in space parabolic linear evolution equation which governs the
initial dynamics of cellular detonation formation, and which highlights the important
role played by both acoustic wave propagation in the induction zone and curvature
of the detonation front.

Recently Clavin, He & Williams (1997) have studied the multi-dimensional stability
of overdriven detonation waves in the limit of large propagation Mach numbers D∗.
In their article, the appropriateness of using a one-step Arrhenius reaction model to
study linear detonation stability in the limit of a large activation energy is questioned.
Instead, Clavin et al. (1997) use reaction rate models with different temperature
sensitivities of the induction zone and main heat release layer to investigate the linear
stability problem. As explained in Short (1997b), however, their criticisms of the
one-step Arrhenius model are based on the error of confusing the ad hoc square-wave
model due to Zaidel (1961), in which the main reaction layer is assumed a priori
to have no spatial structure, with that of a detonation model derived using formal
asymptotic expansions based on an assumption of large, but finite, activation energy.
In this asymptotic context, the large-activation-energy problem is well posed, and
comparisons of the behaviour of the lowest-frequency unstable modes, i.e. those in
the regimes where the analysis is uniformly valid, with numerically evaluated modes
are very favourable (Short & Stewart 1997). In addition, the questions raised by
Clavin et al. (1997) concerning the limit of an infinite activation energy rather than
large but finite activation energies are moot since then, of course, the reference length
scale, i.e. the steady half-reaction length, is itself infinite.

Having established the mechanisms behind detonation instability for large activa-
tion energies in a one-step Arrhenius reaction model, we now progress to the study
of problems with different limits of equally important practical interest, namely those
of a moderate activation energy and a low heat release measured on scales associ-
ated with the steady post-shock detonation temperature. The latter limit could, for
example, account for the large amounts of inert diluent that are typically added to
the chemical mixtures when conducting experiments on cellular detonation instabil-
ities (Strehlow 1970), but as in Clavin et al. (1997), also covers situations of large
detonation overdrive. The former limit could model the presence of a hydrocarbon
reactive mixture rather than a hydrogen-oxygen mixture (Fickett, Jacobson & Schott
1972). In the present analysis, we again return to a one-step Arrhenius reaction rate
model, and investigate the stability problem in the limits θ = O(1), (γ − 1) = O(1)

and β � 1. Here β and θ are scaled such that β = γQ̃/c̃∗ 2
s and θ = γẼ/c̃∗ 2

s , where Q̃

and Ẽ are the actual dimensional heat release and activation energy respectively for
the reaction mixture and c̃∗ 2

s is the immediate post-shock temperature in the steady
detonation wave. Since c̃∗ 2

s is a function of the Mach number D∗, the quantities β
and θ represent what will be called respectively the effective heat release and the

effective activation energy. Our analysis thus applies to situations where Q̃� c̃∗ 2
s and

Ẽ = O(c̃∗ 2
s ). It is also assumed that the steady post-shock flow Mach number M∗

s

is of order unity and that the detonation overdrive f > 1, to eliminate the complex
transonic flow problem that occurs when f = 1, β � 1 and M∗

s = 1 + O(β1/2). Since
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M∗
s = O(1) and (γ − 1) = O(1), the analysis here applies to a much wider range of

parameters than those considered by Clavin et al. (1997), where γ ∼ 1 and M∗
s � 1.

The advantage of the limits investigated in the present analysis for a one-step
Arrhenius reaction model is that the steady detonation structure can be described
analytically, with the reactant mass fraction following a simple exponential decay law.
By using a two-term perturbation expansion in β, an explicit analytical representation
of the normal-mode linear disturbances is obtained, giving rise to an analytical disper-
sion relation governing the stability of detonations for situations where θ = O(1) and
β � 1. In contrast, the dispersion relation in Clavin et al. (1997) is an integral relation
and must be obtained by numerical integrations of the perturbation eigenstructures
through the spatially varying main reaction zone. Similarly, such integrations would
need to be conducted for an analytical investigation of the rationally derived three-
step chain-branching reaction model used in Short & Dold (1996) and Short & Quirk
(1997) to study the linear stability of a detonation having different temperature sen-
sitivities of the chain-initiation, chain-branching and chain-termination rates. In the
present analysis, the growth rate is determined explicitly as a function of the ratio
of specific heats γ, the effective heat release β, the effective activation energy θ, the
detonation Mach number D∗ and the disturbance wavenumber k. This allows us to
establish distinguished limits between β and D∗ which determine, for example, regimes
of stability or instability. In turn, some of the suggestions put forward by Erpenbeck
(1964) regarding the existence of such regimes can now be qualified mathematically
as a result of the present investigation.

2. Model
An ideal gas F is assumed to undergo a unimolecular, first-order, irreversible

reaction

F→ P,
for product P, with constant mole fraction and ratio of specific heats γ. The reaction
rate is modelled by the one-step Arrhenius reaction

DY

Dt
= r = K(1− Y ) exp

[−θ/ (p/ρ)] , (2.1)

where Y is the reaction progress variable, θ is the activation energy for the reaction,
K the constant pre-exponential factor and p and ρ are the pressure and density
respectively. Unburnt fuel corresponds to Y = 0, fully depleted fuel to Y = 1. The
convective derivative is

D

Dt
=

∂

∂tl
+ ul1

∂

∂xl
+ ul2

∂

∂yl
,

where the superscript l on Cartesian space coordinates (x, y), on velocity components
(u1, u2) and on the time coordinate t denotes the laboratory frame. The caloric and
ideal thermal equations of state are respectively

e =
p

(γ − 1)ρ
− q, T = p/ρ, (2.2)

for specific internal energy e, temperature T and chemical energy q, where

q = βY , (2.3)

with β representing the total chemical energy available in the unreacted mixture.
The model is completed by assuming the hydrodynamic behaviour of the fluid obeys
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the compressible reactive Euler equations in which heat-conduction, viscosity and
radiation effects are negligible. In non-dimensional form these are

Dρ

Dt
+ ρ∇ · u = 0,

Du

Dt
+
v

γ
∇p = 0,

De

Dt
+ p

Dv

Dt
= 0, (2.4)

with the velocity vector denoted by u = (u1, u2) and the specific volume by v = ρ−1.
The scales for density, pressure, temperature and velocity are the dimensional

post-shock density, pressure, temperature and sound speed (c̃∗s ) respectively in an
appropriately defined steady detonation wave (see §3). The scaling for length is the
steady half-reaction length (̃l1/2), the distance from the shock to the point where half

of the reactant is consumed, and for time is l̃1/2/c̃
∗
s . The scaled activation energy and

heat release quantities θ and β are defined as

θ = γẼ/c̃∗ 2
s , β = γQ̃/c̃∗ 2

s , (2.5)

for dimensional activation energy Ẽ and heat release Q̃. The alternative scalings are
the activation energy E and heat release Q defined by Erpenbeck (1964) as

E = γẼ/c̃∗ 2
0 , Q = γQ̃/c̃∗ 2

0 , (2.6)

where c̃∗0 is the adiabatic pre-shock sound speed. Defined in this way, E and Q are
independent of the detonation speed. Thus,

θ = E/ν2, β = Q/ν2, (2.7)

where

ν2 =
c̃∗ 2
s

c̃∗ 2
o

=
(2γD∗ 2 − γ + 1)

[
(γ − 1) + 2/D∗ 2

]
(γ + 1)2

(2.8)

is the temperature jump across the steady detonation shock. The quantity D∗ denotes
the detonation Mach number relative to the upstream unreacted material.

3. Steady detonation structure
The standard reactive flow model described in §2 admits a steady one-dimensional

steady-wave solution, denoted in the following by the superscript ∗, whose general
spatial structure for arbitrary values of γ, θ and β can be determined through
a Rankine-Hugoniot analysis with the one-step Arrhenius rate law. Assuming the
steady detonation to propagate to the left along the path xl = −D∗s tl , where D∗s is the
steady detonation Mach number relative to the post-shock sound speed, the pressure,
velocity and density satisfy the relations

p∗ = a+ (1− a) [1− (γ − 1)βbY ∗
]1/2

, u∗1 =
(1− p∗)
γM∗

s

+M∗
s , u∗2 = 0, ρ∗ =

M∗
s

u∗1
,

(3.1)
in the steady shock-attached coordinate system

X = xl + D∗s t
l , (3.2)

where

M∗ 2
s =

(γ − 1)D∗ 2 + 2

2γD∗ 2 − (γ − 1)
, a =

γM∗2
s + 1

(γ + 1)
, b =

2(γ + 1)M∗2
s

γ(1−M∗ 2
s )2

. (3.3)
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The quantity M∗
s is the flow Mach number immediately behind the shock. The

variation in the reaction progress variable is determined by the first-order equation

Y ∗X = r∗/u∗1, (3.4)

which defines the constant pre-exponential factor K as

K =

∫ 1/2

0

u∗1(1− Y ∗)−1 exp
[
θ/
(
p∗/ρ∗

)]
dY ∗. (3.5)

The steady variables satisfy the shock conditions

ρ∗ = p∗ = T ∗ = 1, u∗1 = M∗
s , u∗2 = 0, Y ∗ = 0. (3.6)

For given γ and β, the detonation velocity D∗ is determined by specification of the
detonation overdrive, f, defined by

f =
(
D∗/D∗CJ

)2
, (3.7)

where D∗CJ is the Chapman–Jouguet (CJ) detonation velocity, the minimum sustainable
steady velocity determined by the flow velocity being exactly sonic at the end of the
wave where q∗ = β. The corresponding value of M∗

s when D∗ = D∗CJ is

M∗
s =

(1 +
(γ2 − 1)β

γ

)
−
((

1 +
(γ2 − 1)β

γ

)2

− 1

)1/2
1/2

, (3.8)

where

D∗CJ =

(1 +
(γ2 − 1)Q

γ

)
+

((
1 +

(γ2 − 1)Q

γ

)2

− 1

)1/2
1/2

. (3.9)

Finally, the local flow Mach number M∗ is denoted by

M∗ = u∗1/
(
p∗/ρ∗

)1/2
, (3.10)

where M∗ = 1 when q∗ = β corresponds to D∗ = D∗CJ .

3.1. The limit of weak effective heat release β � 1

In the following, practical situations where the post-shock scaled heat release β is
small, i.e. β � 1, and the difference between the ratio of specific heats and unity is of
order unity, i.e. (γ − 1) = O(1), are examined. Since β = Q/ν2, where ν is a function
of D∗, we are thus not only concerned with problems where the pre-shock scaled heat
release is small, i.e. where Q � 1, but also with a more general class of problems
where Q� ν2. In order to establish a perturbation procedure, the product of (γ − 1)
and β is defined as

(γ − 1)β = ε, ε� 1. (3.11)

At this stage an additional restriction is also introduced, in which the flow shock
number M∗

s = O(1) < 1. Consequently, it is also required that f > 1, i.e. the steady
wave must be overdriven, in order to eliminate the complex transonic flow problem
that occurs when f = 1, β = O(ε) and M∗ 2

s = 1 +O(ε1/2). The assumption M∗
s = O(1)

also allows a more general class of problems to be considered than those appearing
in Clavin et al. (1997), who consider M∗

s = o(1); the present choice ensures that
leading-order changes in the flow field propagated along characteristic acoustic wave
surfaces can be distinct from those propagated along entropy paths.
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Before proceeding, we mention two situations of physical importance contained
within these assumptions. First, for large overdrive

f � 1, D∗ 2 � 1, ν2 ∼ D∗ 2, β ∼ Q/D∗ 2 = O(ε), (3.12)

indicating that for f � 1 the proceeding analysis will be valid for Q � D∗ 2. This
includes cases for which Q � 1. Note that since (γ − 1) = O(1), M∗

s = O(1) when
D∗ 2 � 1. Also, when Q = O(1), the ordering

D∗ 2 = O
(
ε−1
)

(3.13)

holds. In contrast, for O(1) overdrives

f = O(1) > 1, D∗ 2 = O(1), ν2 = O(1), β ∼ Q = O(ε). (3.14)

When (γ − 1) = O(1), the last condition thus restricts the validity of the following
analysis to situations where Q = O(ε) when f = O(1). However, since M∗

s = O(1) < 1
when D∗ = O(1) > 1 even for (γ − 1)� 1, the assumption that (γ − 1) = O(1) can be
relaxed and it is only required that (γ− 1)β � 1 for the following analysis to be valid
for f = O(1). In both cases it will be assumed that the activation energy

θ = O(1). (3.15)

For the case of large overdrives (3.12), E can be as large as D∗ 2, thus rendering
the analysis valid in the limit of very large activation energies. In the case of O(1)
overdrives (3.14), E = O(1).

3.2. Steady detonation wave structure for ε� 1

When ε � 1 and θ = O(1), the steady detonation wave structure can be derived
asymptotically. Defining z = [v, u1, u2, p, Y ]T as the matrix of thermodynamic and
chemical quantities, the steady structure (3.1) can be expanded in the limit ε→ 0 as

z∗ ∼ z∗0 + εz∗1, (3.16)

where

z∗0 =
[
v∗b , u

∗
b, 0, p∗b, Y

∗
0

]T
,

z∗1 =

[
(Y ∗0 − 1)

γ(1−M∗ 2
s )
,
M∗

s (Y
∗

0 − 1)

γ(1−M∗ 2
s )

, 0, −M
∗ 2
s (Y ∗0 − 1)

(1−M∗ 2
s )

, Y ∗1

]T

,

 (3.17)

and

v∗b = 1 + ε
1

γ(1−M∗ 2
s )

+ ε2 (γ + 1)M∗ 2
s

2γ2(1−M∗ 2
s )3

,

u∗b = M∗
s + ε

M∗
s

γ(1−M∗ 2
s )

+ ε2 (γ + 1)M∗ 3
s

2γ2(1−M∗ 2
s )3

,

p∗b = 1− ε M∗ 2
s

(1−M∗ 2
s )
− ε2 (γ + 1)M∗ 4

s

2γ(1−M∗ 2
s )3

.


(3.18)

We note that the leading-order state for pressure, velocity, and specific volume is
taken to be p∗b, u∗b and v∗b , i.e. the constant burnt state at the equilibrium point
X = ∞. Although p∗b, u∗b and v∗b have expansions in ε, they are legitimately treated
as O(1) constant parameters at this stage, and expanded at an appropriate point
later in the analysis. As will be demonstrated later, this choice reflects a desire to
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capture the correct form of the characteristic surfaces for acoustic wave propagation
at the equilibrium state X = ∞. It allows us to avoid the secularities that would
otherwise occur in the following stability investigation as X → ∞ by approximating
the characteristic surfaces for acoustic wave propagation in the region X > 0 by those
at the shock state X = 0.

Using (3.11), the pre-exponential factor K can be expanded as K ∼ K0 +εK1, where

K0 =

∫ 1/2

0

u∗be[θ/p∗bv∗b ]

(1− Y ∗0 )
dY ∗0 = u∗be

[θ/p∗bv∗b ] ln 2. (3.19)

The equation which determines Y ∗0 follows from (3.4) and with the shock conditions
(3.6) is given by

Y ∗0,X =
K0

u∗b
(1− Y ∗0 )e−[θ/p∗bv∗b ], Y ∗0 (0) = 0. (3.20)

Its solution is

Y ∗0 = 1− ( 1
2

)X
. (3.21)

Thus the leading-order reactant mass fraction variation Y ∗0 decays exponentially for
X > 0 and is also independent of the activation energy θ. Similarly, the rate r∗ is
expanded as r∗ ∼ r∗0 + εr∗1 , where

r∗0 = u∗b ln(2)(1− Y ∗0 ) = u∗b ln(2)
(

1
2

)X
. (3.22)

4. Linear stability analysis
The stability of a steady detonation wave in the limit of weak effective heat

release now can be investigated using a normal-mode approach. The problem for
arbitrary values of θ, β, γ and f has been formulated in Bourlioux & Majda (1992),
Short (1997a), Sharpe (1997) and Short & Stewart (1998). The latter formulation
is summarized briefly as follows. The stability analysis proceeds by defining the
shock-attached coordinate system

x = xl + D∗s t
l − h(y, t), t = tl , (4.1)

where h(y, t) represents the perturbation to the shock. Perturbations to the steady
detonation wave structure (3.1) and (3.4) have the form

z = z∗(x) + z′(x)eλt+iky, h = h′eλt+iky, (4.2)

where Re(λ) represents the disturbance growth rate, Im(λ) the disturbance frequency
and k the disturbance wavenumber. Substituting (4.1) and (4.2) into (2.1) and (2.4)
results in a system of five first-order linear differential equations with spatially varying
coefficients for the vector of complex perturbation eigenfunctions z′(x). This system
can be written in the form

A∗ · ζ ,x +
(
λ+ ikB∗ ·+C∗·) ζ − (λ+ ikB∗·) z∗x = 0, (4.3)

where

ζ = z′/h′. (4.4)
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The matrices A∗, B∗ and C∗ are defined as

A∗ =



u1 −v 0 0 0

0 u1 0 v/γ 0

0 0 u1 0 0

0 γp 0 u1 0

0 0 0 0 u1



∗

, B∗ =



u2 0 −v 0 0

0 u2 0 0 0

0 0 u2 v/γ 0

0 0 γp u2 0

0 0 0 0 u2



∗

(4.5)

and

C∗ =



−u1,x v,x 0 0 0

p,x/γ u1,x 0 0 0

0 u2,x 0 0 0

−(γ − 1)β[rv − r/v]/v p,x 0 γu1,x − (γ − 1)βrp/v −(γ − 1)βrY /v

−rv Y,x 0 −rp −rY



∗

.

(4.6)
The undefined quantities in C∗ are given by

rv =
rθ

vT
, rp =

rθ

pT
, rY = −K exp

(
− θ
T

)
. (4.7)

It should be noted that the terms appearing in C∗ relating to the first four equations
in (4.3) are either proportional to z∗x or to the factor (γ− 1)β. The perturbation shock
conditions are determined from the linearized Rankine–Hugoniot shock relations as

v′ = λκvh
′, u′1 = λκu1

h′, u′2 = ikκu2
h′, p′ = λκph

′, Y ′ = 0, (4.8)

where

κv =
4

(γ + 1)D∗ 2M∗
s

, κu1
=

2(1 + D∗2)
(γ + 1)D∗2

, κu2
=

2M∗
s

(
D∗ 2 − 1

)
2 + (γ − 1)D∗ 2

, κp = − 4γM∗
s

(γ + 1)
.

(4.9)
The boundary conditions for (4.3) thus become

ζ(0) =
[
λκv, λκu1

, ikκu2
, λκp, 0

]T
. (4.10)

5. Perturbation analysis
A two-term perturbation solution to the differential system (4.3) with boundary

conditions (4.10) is now obtained for ε� 1. Using the steady-state expansion (3.16),
the matrices A∗, B∗ and C∗ are each expanded in the regular form

A∗(x) = A∗0 + εA∗1(x), B∗(x) = B∗0 + εB∗1 (x), C∗(x) = C∗0 (x) + εC∗1 (x). (5.1)

Similarly, the perturbation eigenfunctions ζ are also expanded in the regular form

ζ = ζ0 + εζ1. (5.2)
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5.1. Leading-order problem

Substituting equations (5.1) and (5.2) into (4.3) and collecting O(1) terms, the differ-
ential system

A∗0 · ζ0,x +
(
λ+ ikB∗0 ·+C∗0 ·

)
ζ0 =

(
λ+ ikB∗0 ·

)
z∗0,x (5.3)

is derived which governs the solution for ζ0. The constant matrices

A∗0 =



ub −vb 0 0 0

0 ub 0 vb/γ 0

0 0 ub 0 0

0 γpb 0 ub 0

0 0 0 0 ub



∗

, B∗0 =



0 0 −vb 0 0

0 0 0 0 0

0 0 0 vb/γ 0

0 0 γpb 0 0

0 0 0 0 0



∗

, (5.4)

consist of values of the steady detonation state at the equilibrium point. The matrix
C∗0 is given by

C∗0 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−rv0 Y0,x 0 −rp0 −rY 0



∗

, (5.5)

where

r∗v0 =
r∗0θ
v∗ 2
b p

∗
b

, r∗p0 =
r∗0θ
v∗bp∗ 2

b

, r∗Y 0 = −K0e
−[θ/p∗bv∗b] = −u∗b ln 2. (5.6)

Thus the equations which determine the leading-order density, pressure and velocity
perturbations have constant coefficients and are decoupled from the O(ε) spatial
variations in the steady structure brought about by the O(ε) effective heat release
and the O(1) spatial gradient variations in Y ∗0 . These equations are simply the
standard ones of small-amplitude acoustic wave propagation in a uniform medium,
with the acoustic perturbations existing around the steady detonation equilibrium
state. Writing

s = [u1, u2, p]
T (5.7)

as the vector of velocity and pressure components, with s ∼ s0 +εs1, the leading-order
solution s0 is simply determined from (5.3) as

s0 =

 (u1)0

(u2)0

p0

 =

 A4λ
(2)

ikA4

γA1

 eλ
(2)x +

 A5λ
(3)

ikA5

γA2

 eλ
(3)x +

 A6

ikA3

0

 eλ
(1)x. (5.8)

The constants A1, A2 and A3 are undetermined at this stage, while the dependence of
A4, A5 and A6 on them is given in Appendix A. The double eigenvalue

λ(1) = − λ

u∗b
, (5.9)
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corresponds to the propagation of density and vorticity disturbances along entropy
waves, while the two eigenvalues

λ(2,3) = − u∗bλ
(u∗ 2
b − p∗bv∗b)

[
1±

(
p∗bv∗b

)1/2

u∗b

[
1 +

k2

λ2

(
p∗bv

∗
b − u∗ 2

b

)]1/2
]

(5.10)

correspond to the characteristic surfaces along which acoustic wave disturbances are
propagated. The mode corresponding to λ(2) is responsible for acoustic wave distur-
bances which propagate upstream from the equilibrium point to the detonation shock,
while the mode corresponding to λ(3) is responsible for acoustic wave disturbances
which propagate downstream from the detonation shock to the equilibrium point.
Similarly, v0 is determined as

v0 = A8e
λ(2)x + A9e

λ(3)x + A7e
λ(1)x, (5.11)

where A7 is yet to be determined, while A8 and A9 are given in Appendix A. The last
of equations (5.5) determines Y0 which now depends on the steady, spatially varying
reactant mass fraction Y ∗0 . This equation can be integrated analytically leading to

Y0 = ln 2
(

1
2

)x [
(A10 + xA11) eλ

(1)x + A12e
λ(2)x + A13e

λ(3)x + 1
]
, (5.12)

where A10 is yet to be determined, while A11, A12 and A13 are given in Appendix A.

5.2. First-order problem

At the next order of the analysis, the pressure and velocity disturbances are now
affected by the spatially varying heat release. The differential system governing ζ1 can
be shown to take the form

A∗0 · ζ1,x +
(
λ+ ikB∗0 ·+C∗0 ·

)
ζ1 = −A∗1 · ζ0,x −

(
ikB∗1 + C∗1

) · ζ0

+
(
λ+ ikB∗0 ·

)
z∗1,x + ikB∗1 · z∗0,x, (5.13)

where the spatially dependent matrices A∗1, B∗1 and C∗1 are defined as

A∗1 =



(u1)1 −v1 0 0 0

0 (u1)1 0 v1/γ 0

0 0 (u1)1 0 0

0 γp1 0 (u1)1 0

0 0 0 0 (u1)1



∗

, B∗1 =



0 0 −v1 0 0

0 0 0 0 0

0 0 0 v1/γ 0

0 0 γp1 0 0

0 0 0 0 0



∗

,

(5.14)
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and

C∗1 =



−(u1)1,x v1,x 0 0 0

p1,x/γ (u1)1,x 0 0 0

0 0 0 0 0

− r0

v∗ 2
b

[
θ

p∗bv∗b
− 1

]
p1,x 0 γ(u1)1,x − r0θ

p∗ 2
b v
∗ 2
b

1

v∗b
K0e

−[θ/p∗bv∗b]

−rv1 Y1,x 0 −rp1 −rY 1



∗

. (5.15)

Using the O(ε) steady wave structure in §3, the second, third and fourth equations of
(5.13) can be written in the form

F ∗ · s1,x + G · s1 =
(

1
2

)x
δ

 A14

ikA17

A20 + xA21

 eλ(1)x +

 A15

ikA18

A22

 eλ
(2)x

+

 A16

ikA19

A23

 eλ
(3)x +

 −λ(1)u∗b ln 2
−ikv∗bM∗

s ln 2
A24

 (5.16)

for s1 = [(u1)1, (u2)1, p1]
T . The coefficients A14 to A24 are given in Appendix A. Also

the matrices F ∗ and G∗ are given by

F ∗ =


1 0 v∗b/γu∗b

0 1 0

γp∗b/u∗b 0 1

 , G =


−λ(1) 0 0

0 −λ(1) ikv∗b/γu∗b

0 ik
[
γp∗b/v∗b

] −λ(1)

 (5.17)

and the constant δ by

δ =
M∗

s

γ(1−M∗ 2
s )u∗b

. (5.18)

Since (1/2)x can be written in the exponential form exp [−(ln 2)x] and F ∗ and G∗ are
constant, a particular solution for (5.16) can be found as

s1p =
(

1
2

)x A35 + xA36

ik(A40 + xA41)
A30 + xA31

 eλ
(1)x +

 A37

ikA42

A32

 eλ
(2)x

+

 A38

ikA43

A33

 eλ
(3)x +

 A39

ikA44

A34

 , (5.19)

where the coefficients A30 to A39 are given in Appendix A. The homogeneous solution
to (5.16) has an identical form to (5.8), namely

s1h =

 (u1)1h

(u2)1h

p1h

 =

 B4λ
(2)

ikB4

γB1

 eλ
(2)x +

 B5λ
(3)

ikB5

γB2

 eλ
(3)x +

 B6

ikB3

0

 eλ
(1)x, (5.20)
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where B1, B2 and B3 are undetermined at this stage, and B4, B5 and B6 are given
in Appendix A. Thus we have managed to construct a solution for the pressure and
velocity normal-mode eigenfunctions p(x), u1(x), and u2(x) correct to O(ε), namely

s = s0 + ε(s1p + s1h) + O(ε2). (5.21)

This is now sufficient to determine a dispersion relation for the perturbed weak-
effective-heat-release detonation.

6. Radiation condition
In order to determine λ explicitly, an additional condition is required on the per-

turbations to supplement the shock conditions (4.10). The condition we apply, as
originally derived in Buckmaster & Ludford (1986), is that of the standard radiation
condition at the equilibrium point x = ∞, which prevents acoustic disturbances propa-
gating upstream from x = ∞ towards the shock. The characteristic surfaces represent-
ing upstream propagation at x = ∞ correspond to the modes exp

[
λ(2)x+ iky + λt

]
.

Such modes can only be eliminated from the solution (5.8), (5.19) and (5.20) for s by
putting

A1 + εB1 = 0, (6.1)

implying A1 = B1 = 0. This has the additional implication that the coefficients A4 = 0,
A8 = 0, A12 = 0, A15 = 0, A18 = 0, A22 = 0, A27 = 0, A32 = 0, A37 = 0, A42 = 0 and
B4 = 0 (Appendix A). Thus for the weak-effective-heat-release problem, all upstream
acoustic wave propagation is eliminated behind the detonation shock, in contrast
to the large-activation-energy problem where upstream acoustic wave propagation is
permitted between the main reaction layer and the shock.

7. Shock relations
In order to determine the remaining unknown coefficients A2, A3, B2, B3, A7 and

A10 the shock conditions (4.10) are now employed. The third of equations (5.21) for
the pressure perturbation p with (6.1) and (4.10) gives

A2 + εB2 = −u∗bλ(1)γ−1κp − εγ−1 (A30 + A33 + A34) , (7.1)

while the first of equations (5.21) for u1 with (6.1) and (4.10) gives

k2

λ(1)
(A3 + εB3) = −λ(1)u∗bκu1

+
v∗bλ(3)

u∗b(λ(3) − λ(1))
(A2 + εB2)− ε (A35 + A38 + A39) ,

(7.2)
λ(1) 6= λ(3). The second of equations (5.21) for u2 with (6.1) and (4.10) gives

A3 + εB3 = κu2
+

v∗b
u∗b(λ(3) − λ(1))

(A2 + εB2)− ε (A40 + A43 + A44) . (7.3)

Finally, (5.11) and (5.12) with (4.10) give

A7 = λκv − A8 − A9, A10 = −A12 − A13 − 1. (7.4)
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8. Dispersion relations
8.1. General dispersion relation

The dispersion relation governing the stability of detonation waves in the limit of
weak effective heat release, ε � 1, is now obtained by eliminating the combination
A3 + εB3 from (7.2) and (7.3), with A2 + εB2 determined from (7.1). This results in the
dispersion relation

λ2κu1
+ u∗bk

2κu2
− γ−1κpλ

2

(p∗b/v∗b)1/2

[
1 +

k2

λ2

(
p∗bv

∗
b − u∗ 2

b

)]1/2

−ε [λ [A35 + A38 + A39] + u∗bk
2 [A40 + A43 + A44]

− γ−1λ

(p∗b/v∗b)1/2
[A30 + A33 + A34]

[
1 +

k2

λ2

(
p∗bv

∗
b − u∗ 2

b

)]1/2
]

= 0, (8.1)

equivalent to a truncated expansion of the form,

F0(λ; ai(ε)) + εF1(λ; ai(ε)) = 0 (8.2)

where the constants ai are O(1).

8.2. Inert step-shock dispersion relation (ε = 0)

When Q = 0 and (γ − 1) and D∗ are order one, the resulting simplification of (8.1)
corresponds to the dispersion relation for inert Euler-step-shock stability. From (8.1)
this is, without asymptotic approximation,

λ2κu1
+M∗

s κu2
k2 − λ2γ−1κp

[
1− k2

λ2
(M∗ 2

s − 1)

]1/2

= 0. (8.3)

Using (3.3) and (4.9), (8.3) can be written in the form,

z2 + ω + ξz2
[
1 +

η

z2

]1/2

= 0, (8.4)

where

z = λ/k (8.5)

and

ω =
(γ + 1)D∗ 2(D∗ 2 − 1)

(D∗ 2 + 1)(2γD∗ 2 − (γ − 1))
, ξ =

2D∗ 2

(1 + D∗ 2)

(
(γ − 1)D∗ 2 + 2

2γD∗ 2 − (γ − 1)

)1/2

,

η =
(γ + 1)(D∗ 2 − 1)

2γD∗ 2 − (γ − 1)
.

 (8.6)

Since 1 < γ < 2 and D∗ > 1, then ω > 0, ξ > 0, η > 0, and it is easily demonstrated
that there is no solution of (8.3) with Re(λ) > 0. At this point we recall the results of
Majda & Rosales (1983) and Majda (1987), who showed that the stability of a step
shock in a non-reactive Euler flow for an arbitrary equation of state with a Gruneisen
coefficient Γ is governed by the inequality

(µ− 1)M∗ 2
s < (Γ + 1)−1, (8.7)

where µ represents the ratio of density behind the unperturbed steady planar shock
to that downstream of the shock. When the inequality (8.7) is satisfied, the shock is
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stable (Re(λ) < 0). However, when

(Γ + 1)−1 6 (µ− 1)M∗ 2
s 6 (1 +M∗

s )Γ
−1, (8.8)

the inert step shock is found to be neutrally stable. For

(µ− 1)M∗ 2
s > (1 +M∗

s )Γ
−1 (8.9)

the inert step shock is unstable (Erpenbeck 1962). For an ideal gas, Γ = γ − 1, and
the inequality (8.7) is satisfied for any finite values of γ > 1 and D∗ > 1. When
D∗ → ∞, however, (µ − 1)M∗ 2

s ∼ γ−1 and in this limit, as pointed out by Erpenbeck
(1962, 1964), the inert Euler step shock becomes neutrally stable. Majda & Rosales
(1983) use the regime of neutral stability governed by (8.8) to study the formation
of transverse shock waves behind a detonation wave which has no spatial structure.
Clavin et al. (1997) also note that the highly overdriven limit of the detonation model
they examine would be, to leading-order, an inert strong shock. However, explicit
analytical solutions for the associated stability problem would still not be possible
even in this limit, as is the case for the present detonation model.

8.3. Stability results for D∗ = O(1), (γ − 1)Q� 1

As well as applying to an inert step shock, the dispersion relation (8.3) also must
govern the leading-order stability behaviour of a planar one-step Arrhenius reaction
for D∗ = O(1) and ε � 1, i.e. for finite detonation Mach numbers. Based on the
discussion in §8.1, the following conclusion can be drawn: when D∗ > D∗CJ is finite,
ν2 = O(1), β ∼ O(Q), and the planar detonation is stable (Re(λ) < 0) for parameters
contained within the limits

f = O(1) > 1, (γ − 1)Q� 1, θ−1 � (γ − 1)Q. (8.10)

The last condition follows from the fact that the leading-order dispersion relation
(8.3) for D∗ = O(1) > 1 is valid for activation energies θ such that θε � 1. The
relations in (8.10) include two cases of particular interest: first, when (γ − 1) = O(1)
and Q � 1; and secondly, when (γ − 1) � 1 and Q = O(1). Thus for (γ − 1) = O(1)
and f = O(1) > 1, a detonation with a pre-shock temperature-scaled heat release
Q � 1 will be stable. However, even when Q = O(1), the detonation will remain
stable provided (γ − 1) � 1, i.e. in the Newtonian limit, where the ratio of specific
heats is sufficiently close to unity. Since E ∼ O(θ) when f = O(1) > 1, the relation
(8.10) defines a region in the (Q, E, γ, f)-space where the detonation will be stable to
two-dimensional disturbances.

8.4. Dispersion relation for D∗ � 1 and ε� 1

We now turn our attention to situations where D∗ � 1, so that the inert step shock is,
in the limit, neutrally stable (Erpenbeck 1964; Majda & Rosales 1983; Majda 1987).
In order to maintain our assertion that M∗

s = O(1) < 1, the condition (γ − 1) = O(1)
is also enforced. For D∗ � 1 the steady-flow Mach number M∗

s has the expansion

M∗
s ∼ (M∗

s )0 +
1

D∗ 2
(M∗

s )1 +
1

D∗ 4
(M∗

s )2, (8.11)

where

(M∗
s )0 =

(
(γ − 1)

2γ

)1/2

, (M∗
s )1 =

(γ + 1)2

4γ (2γ(γ − 1))1/2
, (M∗

s )2 =
(3γ − 1)(γ − 3)(γ + 1)2

32γ2(γ − 1) (2γ(γ − 1))1/2
.

(8.12)
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Also when D∗ 2 � 1, the constants κv, κu1
, κu2

and κp (4.9) can be expanded in the
form

F ∼ (F)0 +
1

D2
(F)1 , (8.13)

where

(κv)0 = 0, (κu1
)0 =

2

γ + 1
, (κu2

)0 =

(
2

γ(γ − 1)

)1/2

, (κp)0 = −2 (2γ(γ − 1))1/2

γ + 1
,

(8.14)
and

(κv)1 =
4 (2γ)1/2

(γ + 1) (γ − 1)1/2
, (κu1

)1 =
2

γ + 1
,

(κu2
)1 = − (γ + 1)(3γ − 1)

2
√

2(γ − 1)3/2γ3/2
, (κp)1 = − (γ + 1)

(2γ(γ − 1))1/2
.

 (8.15)

Since Q and D∗ can be chosen independently, the latter depending on the degree of
the overdrive f as well as Q, i.e. D∗ = D∗(γ, f, Q), the steady equilibrium state p∗b, u∗b
and v∗b (3.18) can be expanded as

p∗b ∼ 1− ε (γ − 1)

(γ + 1)
− ε2 (γ − 1)2

(γ + 1)2
− ε

D∗ 2

(γ − 1)

2γ
,

v∗b ∼ 1 + ε
2

(γ + 1)
+ ε2 4(γ − 1)

(γ + 1)2
+

ε

D∗ 2

1

γ
,

u∗b ∼
(

(γ − 1)

2γ

)1/2

+ ε
(2γ(γ − 1))1/2

γ(γ + 1)
+

1

D∗ 2

(γ + 1)2

4γ (2γ(γ − 1))1/2
+ ε2 2(γ − 1)

(γ + 1)2

×
(

(γ − 1)

2γ

)1/2

+
1

D∗ 4

(3γ − 1)(γ − 3)(γ + 1)2

32γ2(γ − 1) (2γ(γ − 1))1/2
+

ε

D∗ 2

(3γ − 1)

2γ (2γ(γ − 1))1/2
,


(8.16)

for D∗ � 1 and ε � 1. The form of these expansions indicates that there are two
particular cases of interest which involve choosing distinguished limits between ε and
D∗. The first occurs in the limit of large overdrives f and for an order-one heat release
Q, i.e. for

f � 1, Q = O(1), where ε ∼ Q/ν2 = O

(
1

D∗ 2

)
(8.17)

since for Q = O(1), D∗ 2
CJ = O(1) and thus ν2 ∼ D∗ 2 = O(f). The second again occurs

for a large detonation overdrive, but now for a large heat release Q, i.e. when

f � 1, Q� 1, and ε ∼ Q/ν2 � O

(
1

D∗ 2

)
, (8.18)

where D∗ 2
CJ = O(Q) and ν2 ∼ D∗ 2. For the latter situation, we mainly restrict our

attention to the two sub-cases

Q� 1, f ∼ O(Q), ε = O

(
1

D∗

)
, (8.19)

where D∗ 2
CJ = O(Q), ν = O(D∗) and D∗ = O(Q), and

Q� 1, f � O(Q), ε� 1

D∗
, (8.20)
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Figure 1. (a) Q versus (εD∗ 2)−1 for f = 5 and γ = 1.4. (b) f versus (εD∗ 2)−1 for
Q = 2.5 and γ = 1.4.

where D∗ 2
CJ = O(Q), ν = O(D∗) and D∗ = O((fQ)1/2). The additional case where

Q� 1, f � O(Q), ε� 1

D∗
, (8.21)

also having D∗ 2
CJ = O(Q), ν = O(D∗) and D∗ = O((fQ)1/2), is covered by the relation

(8.18), but requires some additional comments which are given below. Figure 1(a)
shows the relation between Q and (εD∗ 2)−1 for f = 5 and γ = 1.4. Regimes for which
(εD∗ 2)−1 can be considered as order one are observed to occur where Q = O(1).
Figure 1(b) shows the relation between f and (εD∗ 2)−1 for Q = 2.5 and γ = 1.4.

When any of the distinguished limits (8.17), (8.18), (8.19) or (8.20) hold, p∗b, u∗b and
v∗b can be written in the form

G ∼ (G)0 + ε (G)1 + ε2 (G)2 , (8.22)

to O(ε2), where (G)i is to be determined from (8.16). At this stage an expansion for
the eigenvalue λ is introduced where

λ ∼ λ0 + ελ1 + ε2λ2. (8.23)

Although at first this appears to be inconsistent with the expansion (8.2), it is shown
below that F0 is not differentiable at λ = λ0 and ε = 0, and (8.2) is sufficient to
determine λ to O(ε2).

Substituting (8.11), (8.13), (8.22) and (8.23) into (8.1) then leads to the following
equation for λ0:

λ2
0 +

(γ + 1)

2γ
k2 +

(
2(γ − 1)

γ

)1/2

λ2
0

[
1 +

(γ + 1)

2γ

k2

λ2
0

]1/2

= 0. (8.24)

It is readily observed that the solution

λ0 = ±ik

(
(γ + 1)

2γ

)1/2

(8.25)

occurs when the square root vanishes, and this is precisely when the boundary of
transition from stability to neutral stability (8.7) and (8.8) of the inert step shock
occurs. Thus, to leading-order, λ is a neutrally stable mode which varies linearly with
the wavenumber k. As noted by Clavin et al. (1997), a similar result would also hold
for their chemical reaction model in the limit of weak effective heat release, but this
also must be true for any rationally formulated model reaction scheme such as that
investigated by Short & Quirk (1997).
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Having established the leading-order behaviour (8.25) in which the square root in
(8.24) vanishes, the dispersion relation (8.1) can be simplified to

λ2(κu1
)0 + u∗bk

2(κu2
)0 − γ−1(κp)0λ

2

(p∗b/v∗b)1/2

[
1 +

k2

λ2

(
p∗bv

∗
b − u∗ 2

b

)]1/2

+
1

D2

[
λ2

0(κu1
)1 + (M∗

s )0k
2(κu2

)1

]
−ε [λ0 [(A35)0 + (A38)0 + (A39)0] + (M∗

s )0k
2 [(A40)0 + (A43)0 + (A44)0]

]
= 0, (8.26)

where (A35)0, (A38)0, (A39)0, (A40)0, (A43)0 and (A44)0 are the leading-order expressions
for the coefficients A35, A38, A39, A40, A43 and A44 obtained when D∗ = ∞ and ε = 0
from their general form given in Appendix A. With the leading-order behaviour
(8.25), the next order of terms generated by the dispersion relation (8.26) occurs at
O(ε1/2), corresponding to a grouping of O(ε) terms within the square root, i.e.

F0 ∼ a0(λ− λ0 + a1ε)
1/2. (8.27)

Since the O((ε)1/2) terms are not balanced by any other terms outside of the square
root, λ1 is determined by the expression

2
[
1− (u∗b)

2
0

]
λ1 − λ0

[
(p∗b)1 + (v∗b)1 − 2(u∗b)0(u

∗
b)1

]
= 0. (8.28)

Using the relations in (8.16), the solution for λ1 is given by

λ1 = ±ik

(
γ

2(γ + 1)

)1/2 [
2− γ
γ

]
(8.29)

for ε� 1/D∗ 2, and

λ1 = ±ik

(
γ

2(γ + 1)

)1/2 [
2− γ
γ
− (γ + 1)2

4γ2εD2

]
(8.30)

for ε = O(1/D∗ 2). Thus the O(ε) correction to λ0 is again a purely imaginary root
which varies linearly with the wavenumber k.

By collecting terms at O(ε) in the dispersion relation (8.26), an expression for the
O(ε2) component λ2 can be derived in the following form:

λ2 = − λ2
1

2λ0

− k2

2λ0

[
(v∗b)2 + (p∗b)1(v

∗
b)1 + (p∗b)2 − 2(M∗

s )0(u
∗
b)2 − (u∗b)

2
1

]
+

γ2

2λ0(κp)
2
0

×
[
2λ1(κu1

)0 +
k2

λ0

(u∗b)1(κu2
)0 +

1

εD∗ 2

[
λ0(κu1)1 + (M∗

s )0

k2

λ0

(κu2
)1

]
− Σ

]2

, (8.31)

where

Σ =

[
(A35)0 + (A38)0 + (A39)0 + (M∗

s )0

k2

λ0

[(A40)0 + (A43)0 + (A44)0]

]
. (8.32)

At this stage a real component in λ now appears. For ε = O(1/D∗ 2), Re(λ2) is
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given by

Re(λ2) =
γ(γ + 1) (γ(γ + 1))1/2

4
√

2(γ − 1)k
Re(Σ)

×
[

2
√

2(γ − 1)k

(γ + 1) (γ(γ + 1))1/2
− 1

εD∗ 2
k

(
2

γ(γ + 1)

)1/2

± Im(Σ)

]
, (8.33)

while for ε � O(1/D∗ 2) the second term in the square brackets is omitted. Also,
solutions for which the principal branch of the square root in (8.26) is selected require[

2
√

2(γ − 1)k

(γ + 1) (γ(γ + 1))1/2
− 1

εD∗ 2
k

(
2

γ(γ + 1)

)1/2

± Im(Σ)

]
> 0. (8.34)

Appendix B gives the corresponding forms of Im(λ2) when ε = O(1/D∗ 2), ε = O(1/D∗),
and when ε� O(1/D∗).When ε� O(1/D∗), additional imaginary terms would appear
in λ between O(ε) and O(ε2). However it can be verified that the result for the real
component of λ at O(ε2) nevertheless would be represented by (8.33).

Expressions for Re(Σ) and Im(Σ) are derived from those in Appendix A when
D∗ = ∞ and ε = 0, and take the form

Re(Σ) =
(2(γ − 1))1/2 ln(2)

(γ + 1)
√
γ

− (2γ(γ − 1))1/2

γ3(γ + 1)2 ln(2)

[
(γ2 − 1) [θ(γ − 1) + 1] ln2(2)

+4γ2(γ − 2)k2
]

+
√

2 ln(2)

(
(γ − 1)

γ

)1/2{
− 16γ2

(γ + 1)
(2γ − 3− θ(γ − 1)) k4

+4 ln2(2)(γ − 1) [θ(γ − 1)(γ − 2)− γ(γ + 1)] k2 + (γ − 1)(γ2 − 1)

× ln4(2)

[
(γ − 1)

γ2
[θ(γ − 1) + 1]− 1

]} / [
(γ2 − 1) ln2(2) + 4γ2k2

]2
, (8.35)

and

Im(Σ) = ±k
[

2
√

2

(γ + 1) (γ(γ + 1))1/2
+

2

γ2

(2γ)1/2 (γ − 1)2

(γ + 1) (γ + 1)1/2
[θ − 2]− 2 (2γ)1/2

(γ + 1)1/2

×
{

16γ2k4 + 4 ln2(2)(γ − 1)
[
θ(γ − 1)(γ − 3)− γ2 + 5γ − 3

]
k2 + (γ2 − 1)

× (γ − 1)

γ2
ln4(2)

[
(γ − 1)2θ − γ2 + 4γ − 2

]}/[
(γ2 − 1) ln2(2) + 4γ2k2

]2 ]
. (8.36)

They are functions of γ, θ and k alone.

8.5. Large-wavenumber behaviour

Numerical calculations of the exact linear stability problem (Short & Stewart 1998) for
a one-step Arrhenius model show that detonations appear to be stable to sufficiently
high-wavenumber disturbances regardless of the value of the parameters E, Q, γ
or f. Although our analysis is only valid for k = O(1), we can use the asymptotic
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Figure 2. Re(λ2) versus k for γ = 1.4 and (εD∗ 2)−1 = 0 with (1) θ = 4.5, (2) θ = 4.0, (3) θ = 3.5,
(4) θ = 3.0, (5) θ = 2.5, (6) θ = 2.0, (7) θ = 1.5, (8) θ = 1.0 and (9) θ = 0.5.

expression for the growth rate (8.33) to determine the range of parameters for which
the dispersion relation (8.1) predicts stability of the detonation at sufficiently large
wavenumbers. From (8.35), as k →∞

Re(Σ) ∼ 4 (2γ(γ − 1))1/2 (2− γ)
γ(γ + 1)2 ln(2)

k2, (8.37)

which is positive for 1 < γ < 2. Similarly,

2
√

2(γ − 1)k

(γ + 1) (γ(γ + 1))1/2
− 1

εD∗ 2
k

(
2

γ(γ + 1)

)1/2

± Im(Σ)

∼ k
[
− 2 (2γ)1/2

γ2(γ + 1) (γ + 1)1/2

(
γ2 − 3γ + 3

)− 1

εD∗ 2

(
2

γ + 1

)1/2

+
2 (2γ)1/2 (γ − 1)2θ

γ2(γ + 1) (γ + 1)1/2

]
(8.38)

as k →∞, so that stability at large wavenumbers occurs provided the inequality

(γ − 1)2θ < γ2 − 3γ + 3 +
γ2(γ + 1) (γ + 1)1/2

2 (2γ)1/2 εD∗ 2

(
2

γ + 1

)1/2

(8.39)

is satisfied. We emphasize, however, that this does not imply instability as k → ∞
for parameters which do not meet this criterion, since (8.33) is not valid in the limit
k → ∞. Having obtained an analytical representation of the growth rate (8.33), we
proceed to investigate the range of detonation parameters for which stable or unstable
solutions can be found.

8.6. Spectrum for ε� O(1/D∗ 2)

Figure 2 shows the variation of Re(λ2) with k calculated from (8.33) for (εD∗ 2)−1 = 0,
γ = 1.4 and various values of θ. As k → 0,

Re(λ2) ∼ −8
[
θ(γ2 − 1) + (−γ2 + 3γ − 1)

]
θγ2 (2γ)1/2 (γ − 1)1/2

(γ + 1)(γ2 − 1)2 ln3(2)
k4, (8.40)

so that near k = 0, ∂Re(λ2)/∂k < 0 for 1 < γ < 2. The numerical evaluation of Re(λ2)
from (8.33) reveals that for all values of γ and θ there appears to exist a finite O(1)
wavenumber immediately above which Re(λ2) > 0. Also, providing the inequality
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Figure 3. The migration of Re(λ2) with k for θ = 4, γ = 1.4, and (1) (εD∗ 2)−1 = 0, (2) (εD∗ 2)−1 = 0.05,
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(8.39) is satisfied between γ and θ, there is only a finite range of wavenumbers for
which Re(λ2) > 0. Both the maximum growth rate and the range of wavenumbers for
which Re(λ2) > 0 increase with increasing θ. The wavenumber corresponding to the
maximum growth rate found for each θ and γ determines the initial cell size one would
expect to observe in the initial stages of the cellular detonation formation process.
Thus we conclude that for detonation parameters for which ε� O(1/D∗ 2), as defined
by the distinguished limit (8.18), the detonation is always unstable. Physically, this
corresponds to regions of large overdrive f � 1 and a large pre-shock temperature-
scaled heat release Q� 1.

8.7. Spectrum for ε = O(1/D∗ 2)

Having established that detonations for which ε� O(1/D∗ 2) are globally unstable, we
now establish the stability behaviour in regimes where ε = O(1/D∗ 2). Physically, this
corresponds to regions of large overdrive f � 1, but with an order-one heat release
Q. Figure 3 shows the behaviour of Re(λ2) against the wavenumber k calculated
from (8.33) with θ = 4, γ = 1.4 and for various values of (εD∗ 2)−1. For each value
of (εD∗ 2)−1 plotted, there is a finite range of wavenumbers for which Re(λ2) > 0.
However, as the parameter (εD∗ 2)−1 increases, both the amplitude of the maximum
growth rate and the range of unstable wavenumbers decrease. For (εD∗ 2)−1 > 0.7385,
θ = 4 and γ = 1.4 the detonation becomes stable to two-dimensional disturbances.
This general trend was observed for all the values of θ and γ we examined for which
there is a finite band of instability for a given value of (εD∗ 2)−1, i.e. increasing (εD∗ 2)−1

while holding θ and γ fixed will ultimately render the detonation stable.
Figure 4 shows the location of the neutral stability boundaries in the (θ, (εD∗ 2)−1)-

plane for γ = 1.4 and γ = 1.6. The regions to the left of the boundaries are unstable.
For (εD∗ 2)−1 � 1, the figure illustrates that no neutral stability boundaries exist.
Also, for values of (εD∗ 2)−1 and θ for which the detonation is stable, an increase in
the activation energy θ for a fixed (εD∗ 2)−1, which is equivalent to an increase in
E holding γ, Q and f fixed, will eventually render the detonation unstable to two-
dimensional disturbances. This feature is in agreement with experimental evidence
(Strehlow 1969, 1970) which indicates that detonations in more thermodynamically
sensitive reaction mixtures tend to be more unstable. Figure 5 shows the critical value
of the wavenumber along the neutral stability boundaries calculated in figure 4. The
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neutral stability boundaries shown in figure 4 can also be translated into traditional
(Q,E) or (f, E)-planes by using the steady detonation relations in §3. For f = 5 and
γ = 1.4, figure 6(a) shows the neutral stability boundary calculated in figure 4(a) in
the (Q,E) plane. The region to the right of the boundary is unstable. Our analysis
thus predicts that for a fixed activation energy E, overdrive f and ratio of specific
heats γ, an increase in Q will drive the detonation into regimes of instability. This
boundary is also qualitatively similar to the Q,E neutral stability boundary calculated
in Short & Stewart (1998) for lower values of f. Alternatively, figure 6(b) shows the
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neutral stability boundary calculated in figure 4(a) in the (f, E)-plane for Q = 1 and
γ = 1.4. Again the region to the right of the boundary is unstable. For a fixed E, an
increase in f generally leads to regions where the detonation is stable. Again both
these features correspond exactly to the observed experimental behaviour (Strehlow
1969, 1970). The analysis here provides a mechanism for understanding the reasons
behind these instabilities in the limit of weak effective heat release. These results also
demonstrate that the conjecture by Erpenbeck (1964) that a region of stability should
be present for sufficiently high overdrive and low heat release can now be qualified as
those regions satisfying the distinguished limit (8.17), i.e. where Q = O(1), and f � 1.
In contrast for Q � 1 and f � 1, the detonation is unstable as Erpenbeck (1964)
discovered.

Finally, figure 7 shows a typical comparison of the growth rate and frequency
obtained from (8.23) with a numerical solution of the full stability problem for Q = 5,
E = 20, f = 5 and γ = 1.6. The three-term approximation of the frequency is clearly
excellent. The one-term approximation of the growth rate provides a reasonable
approximation of the qualitative features of the growth rate, and could be improved
quantitatively by considering higher-order terms in the analysis.

9. Summary
The stability of an overdriven planar detonation wave has been examined for a one-

step Arrhenius reaction model in the limit of weak effective heat release β � 1 and an
order-one activation energy θ, where β and θ are scaled with respect to the post-shock
detonation temperature. These limits allow an analytical dispersion relation to be
obtained which governs the stability of a detonation to small-amplitude perturbations.
The effective heat release is defined as β = Q/ν2, where ν2 represents the ratio of
the steady post-shock temperature to the pre-shock temperature, and thus depends
on the steady detonation propagation Mach number D∗. The parameter Q represents
the dimensional heat release scaled with respect to the pre-shock temperature. For
D∗ = O(1) > 1, Q � 1 and (γ − 1) = O(1), or D∗ = O(1) > 1, Q = O(1) and
(γ−1)� 1, the detonation is globally stable. For overdriven detonations with D∗ � 1
and (γ − 1) = O(1), the presence of a neutral boundary can be demonstrated when
Q = O(1). Alternatively, for D∗ � 1, (γ− 1) = O(1), and Q� 1, there is a finite band
of wavenumbers over which a single unstable oscillatory mode is present.
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Appendix A. Coefficients
The coefficients appearing in (5.8) are given by

A4 = − v
∗
b

u∗b

A1

(λ(2) − λ(1))
, A5 = − v

∗
b

u∗b

A2

(λ(3) − λ(1))
, A6 =

k2A3

λ(1)
. (A 1)

Similarly the coefficients appearing in (5.11) are determined as

A8 = − v
∗
b

p∗b
A1, A9 = − v

∗
b

p∗b
A2, (A 2)

while those in (5.12) are given by

A11 =
θ

v∗ 2
b p

∗
b

A7 − A6

u∗b
, A12 =

1

(λ(2) − λ(1))

[
θ(γ − 1)

v∗bp∗ 2
b

A1 − A4λ
(2)

u∗b

]
,

A13 =
1

(λ(3) − λ(1))

[
θ(γ − 1)

v∗bp∗ 2
b

A2 − A5λ
(3)

u∗b

]
.

 (A 3)

The coefficients A14 to A24 in (5.16) are given by

A14 =
[
λ(1) − ln(2)

]
A6 +M∗

s ln(2)A7, (A 4)

A15 = A4λ
(2)
[
λ(2) − ln(2)

]
+
A1λ

(2)

M∗
s

+M∗
s ln(2)A8, (A 5)

A16 = A5λ
(3)
[
λ(3) − ln(2)

]
+
A2λ

(3)

M∗
s

+M∗
s ln(2)A9, (A 6)

A17 = λ(1)A3, A18 = A4λ
(2) +

A1

M∗
s

, A19 = A5λ
(3) +

A2

M∗
s

, (A 7)

A20 = γM∗
s ln(2)A6 +

ln(2)

δv∗ 2
b

[
θ

p∗bv∗b
− 1

]
A7 − 1

v∗bδ
ln2(2)A10, A21 = − ln2(2)

δv∗b
A11,

(A 8)

A22 = −γ2M∗
s A4

(
λ(2)

[
λ(2) − ln(2)

γ

]
− k2

)

+A1

(
γλ(2) +

ln(2)

p∗bv∗bδ

[
θ(γ − 1)

p∗bv∗b
+ 1

]
− γ2 ln(2)

)
− 1

δv∗b
ln2(2)A12, (A 9)



132 M. Short and D. S. Stewart

A23 = −γ2M∗
s A5

(
λ(3)

[
λ(3) − ln(2)

γ

]
− k2

)

+A2

(
γλ(3) +

ln(2)

p∗bv∗bδ

[
θ(γ − 1)
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]
− γ2 ln(2)

)
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ln2(2)A13, (A 10)

A24 = γM∗
s u
∗
bλ

(1) ln 2− ln2(2)

δv∗b
. (A 11)

The coefficients A30 to A44 appearing in (5.19) are given by

A30 =

[
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(
2

[
1− p∗bv∗b

u∗ 2
b

] (
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] (−2λ(2) ln(2) + ln2(2)
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where
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Finally, the coefficients appearing in (5.20) are given by
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Appendix B. Calculation of Im(λ2)

For ε = O(1/D∗ 2),

Im(λ2) = ∓ i
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When ε = O(1/D∗),

Im(λ2) = ∓ i
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When ε� O(1/D∗),

Im(λ2) = ∓ i
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